AI and ML for Predicting COVID-19

Malik Magdon-Ismail, Computer Science, Rensselaer.

Shout-Out: Rensselear IDEA J. Hendler, K. Bennet, J. Erickson, MANY good students.

World ~ 8 billion

USA ~ 330 million

NY State ~ 20 million

Rensselaer ~ 10 thousand

Party at Rensselaer ~ 20

vaccines, virology, genomics

Epidemiological Modeling

Harvard-model, Imperial-model, UW-model, Your-model, My-model, ...

AI and Machine Learning Prediction

What the data says vs. What we think ought to be. Engineering success vs. Biological correctness.

Infection counts: very noisy dirty data.

Predictions must be local: mobility patterns, density, social distancing, weather,

• Smaller regions: more noisy; more sparse.

Quadratic Fit + Extrapolate

Quadratic Fit + Extrapolate

Quadratic Fit + Extrapolate

 $\label{eq:linear} \mbox{Linear Fit} + \mbox{Extrapolate}$

Quadratic Fit + Extrapolate

Linear Fit + Extrapolate

 $E_{\rm out} \approx 34$

 $E_{\rm out} \approx 14$ 🗸

A Stunning Nugget From The Theory of Learning

When there is noise,

Simpler can be better than correct.

What we would like to learn versus what we can learn.

The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, My-model, \ldots

A Stunning Nugget From The Theory of Learning

When there is noise,

Simpler can be better than correct.

What we would like to learn versus what we can learn.

The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, Simple-robust-adaptable model, ...

How large is the pasture? Capital District ~ 1 M.

• Extrapolation is hard.

How large is the pasture? Capital District ~ 1 M.

• Extrapolation is hard.

How large is the pasture? Capital District ~ 1 M.

• Extrapolation is hard.

Disaster!

How large is the pasture? Capital District ~ 1 M.

- Extrapolation is hard.
- Changepoints make it impossible.

Disaster!

 $N, \beta, \alpha, \gamma.$ Robust changepoints.

2

Parameters: N, β, α, γ . Robust changepoints.

Robustly determine changepoints.

2

Parameters: $N, \beta, \alpha, \gamma.$ Robust changepoints.

Robustly determine changepoints.

2 Robustly fit. Gray is uncertainty.

- Robustly determine changepoints.
- 2 Robustly fit. Gray is uncertainty.
- 3 State persists across changepoints.

- Robustly determine changepoints.
- 2 Robustly fit. Gray is uncertainty.
- 3 State persists across changepoints.

How: Even simpler analytic model pre-calibrates.

• We get current state:

Infected and contagious. Immune. Social distancing.

• Predictions assuming stabilized behavior.

population	908,843
confirmed infections	9,406
total infections (model)	52,680
infectious (model)	0.2317%
immunity (model)	5.5646%
fatalities	295
fatality rate (model)	0.56%
confirmed infections, Dec 31	13,435
total infections, Dec 31	84,453
infectious, Dec 31	0.5521%
immunity, Dec 31	8.7402%
fatalities, Dec 31	473

611

fatalities, Dec 31

fatalities

fatality rate (model)

infectious, Dec 31

immunity, Dec 31

fatalities, Dec 31

total infections, Dec 31

confirmed infections, Dec 31

10,488,084	population	10,488,084
294,857	confirmed infections	294,857
1,902,553	total infections (model)	1,902,553
3.4063%	infectious (model)	3.4063%
14.7339%	immunity (model)	14.7339%
4,615	fatalities	4,615
0.2426%	fatality rate (model)	0.243%
660,205	confirmed infections, Dec 31	788,645
3,645,433	total infections, Dec 31	4,402,542
2.6067%	infectious, Dec 31	3.7023%
32.1512%	immunity, Dec 31	38.2743%
8,843	fatalities, Dec 31	10,680

All US Counties. All Countries.

Student interactions in residential life 10 0 1 2 3 4 5 6 7 Meals per day in campus dining Student interactions during a meal 10 3 4 5 6 In person classes per day per student 2 10 0 1 2 3 4 5 6 7 Student interactions in a class 0 3 6 9 12 15 18 21 24 27 30 Student testing interval in days 7 1 4 7 10 13 16 19 22 25 28 30 Fraction of students tested 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Fraction of people complying with masks 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Total budget of students tested

20000

<

Who's bringing covid to campus?

Ambient county infection rate?

COVID-War-Room Jan 19: ~ 24 cases, $\sim 20\%$ immunity.

student

0 2										10
9	нĿ			Π.	τŢΤ	- Fr		11	ι Γ	T
0	1	2	3	4	5	6	7	8	9	10

Student interactions in a class

0							20		30		
-	ų,	1.1	i įr	1		-		11		ч	
0	3	6	9	12	15	18	21	24	27	30	

Student testing interval in days

1		7									
-	111		ι.	11	11		11		1 P	1	
1	4	7	10	13	16	19	22	25	28	30	

Fraction of students tested

Fraction of people complying with masks

Total budget of students tested

<

20000

Creator: M. Magdon-Ismail, November 12, 2020

\$

Rensselaer: $1.5\% \approx 60$. 18 infections so far.

• . . .

We have tools to model spread at all scales.

In policy making, all scales are relevant. Decisions should take a holistic view.

• The spread of COVID is just one factor that influences these decisions.

I really enjoyed giving this talk 😜