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Scales of COVID-19

World ∼ 8 billion
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Scales of COVID-19

USA ∼ 330 million
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Scales of COVID-19

NY State ∼ 20 million
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Scales of COVID-19

Albany/Troy/Cap Dist ∼ 1 million
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Scales of COVID-19

Rensselaer ∼ 10 thousand

New Infections Over Previous 14 Days

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  1.4%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64

 R(test):  1.64
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Scales of COVID-19

Party at Rensselaer ∼ 20

Chances to Get COVID on 14-Feb-2021 (no masks)
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Scales of COVID-19

vaccines, virology, genomics
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Two Sides of COVID Modeling

Epidemiological Modeling
Harvard-model, Imperial-model, UW-model, Your-model, My-model, . . .

AI and Machine Learning Prediction
What the data says vs. What we think ought to be.

Engineering success vs. Biological correctness.
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The Race To Predict Ventilator Demand

NYC Capital District
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Infection counts: very noisy dirty data.
Predictions must be local: mobility patterns, density, social distancing, weather, . . . .

Smaller regions: more noisy; more sparse.
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate Linear Fit + Extrapolate
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A Easier Example

True “biological” law: quadratic growth.

Quadratic Fit + Extrapolate Linear Fit + Extrapolate
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Eout ≈ 34 Eout ≈ 14 ✓
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A Stunning Nugget From The Theory of Learning

When there is noise,

Simpler can be better than correct.
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What we would like to learn versus what we can learn.
The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, My-model, . . .
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A Stunning Nugget From The Theory of Learning

When there is noise,

Simpler can be better than correct.
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What we would like to learn versus what we can learn.
The data determines what we can learn

Harvard-model, Imperial-model, UW-model, Your-model, Simple–robust–adaptable model, . . .
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Let’s Predict For The Capital District
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How quickly is it spreading?

How large is the pasture?

Capital District ∼ 1M.

Extrapolation is hard.

Creator: M. Magdon-Ismail, November 12, 2020 AI/ML for COVID-19: 7 / 11 Keep It Simple →



Let’s Predict For The Capital District

Mar/04 Apr/03 May/03 Jun/02
0

50

100

150

200

250

How quickly is it spreading?

How large is the pasture?

Capital District ∼ 1M.

Extrapolation is hard.

Creator: M. Magdon-Ismail, November 12, 2020 AI/ML for COVID-19: 7 / 11 Keep It Simple →



Let’s Predict For The Capital District

Mar/04 Apr/03 May/03 Jun/02
0

50

100

150

200

250

How quickly is it spreading?

How large is the pasture?

Capital District ∼ 1M.

Extrapolation is hard.

Disaster!

Creator: M. Magdon-Ismail, November 12, 2020 AI/ML for COVID-19: 7 / 11 Keep It Simple →



Let’s Predict For The Capital District
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How quickly is it spreading?

How large is the pasture?

Capital District ∼ 1M.

Extrapolation is hard.

Changepoints make it impossible.

Disaster!
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Keep It Simple, Really Simple. But, Adaptive

U M

S

R

βMU/N

γ∆M(t − k)

(1 − γ)∆M(t − k)

U: Uninfected.

M: Contagious.

S: Symptomatic.

R: Recovered.

Parameters:
N, β, α, γ.

Robust changepoints.

1 Robustly determine changepoints.

2 Robustly fit. Gray is uncertainty.

3 State persists across changepoints.
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Keep It Simple, Really Simple. But, Adaptive

U M
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βMU/N

γ∆M(t − k)

(1 − γ)∆M(t − k)

U: Uninfected.

M: Contagious.

S: Symptomatic.

R: Recovered.

Parameters:
N, β, α, γ.

Robust changepoints.

1 Robustly determine changepoints.

2 Robustly fit. Gray is uncertainty.

3 State persists across changepoints.
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Keep It Simple, Really Simple. But, Adaptive

U M
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βMU/N

γ∆M(t − k)

(1 − γ)∆M(t − k)

U: Uninfected.

M: Contagious.

S: Symptomatic.

R: Recovered.

Parameters:
N, β, α, γ.

Robust changepoints.

1 Robustly determine changepoints.

2 Robustly fit. Gray is uncertainty.

3 State persists across changepoints.
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Keep It Simple, Really Simple. But, Adaptive

U M

S

R

βMU/N

γ∆M(t − k)

(1 − γ)∆M(t − k)

U: Uninfected.

M: Contagious.

S: Symptomatic.

R: Recovered.

Parameters:
N, β, α, γ.

Robust changepoints.

1 Robustly determine changepoints.

2 Robustly fit. Gray is uncertainty.

3 State persists across changepoints.

Creator: M. Magdon-Ismail, November 12, 2020 AI/ML for COVID-19: 8 / 11 COVID-War-Room →



Keep It Simple, Really Simple. But, Adaptive

U M

S

R

βMU/N

γ∆M(t − k)

(1 − γ)∆M(t − k)

U: Uninfected.

M: Contagious.

S: Symptomatic.

R: Recovered.

Parameters:
N, β, α, γ.

Robust changepoints.

1 Robustly determine changepoints.

2 Robustly fit. Gray is uncertainty.

3 State persists across changepoints.

How: Even simpler analytic model pre-calibrates.
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Keep It Simple, Really Simple. But, Adaptive

U M

S

R

βMU/N

γ∆M(t − k)

(1 − γ)∆M(t − k)

U: Uninfected.

M: Contagious.

S: Symptomatic.

R: Recovered.

Parameters:
N, β, α, γ.

Robust changepoints.

We get current state:

Infected and contagious. Immune. Social distancing.

Predictions assuming stabilized behavior.
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COVID-War-Room https://covidwarroom.idea.rpi.edu

Capital District North Carolina

All US Counties. All Countries.
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COVID-Back-To-School https://covidspread.idea.rpi.edu

Who’s bringing covid to campus?

Ambient county infection rate?























COVID-War-Room
Jan 19:

∼24 cases,
∼20% immunity.
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COVID-Back-To-School https://covidspread.idea.rpi.edu

Infection Growth from Start of Semester

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  9.1%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64

 R(test):  1.64
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New Infections Over Previous 14 Days

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  1.4%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64

 R(test):  1.64
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Infection Growth from Start of Semester

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  9.1%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64
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New Infections Over Previous 14 Days

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  1.4%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64

 R(test):  1.64
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Chances to Get COVID on 14-Feb-2021 (no masks)
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COVID-Back-To-School https://covidspread.idea.rpi.edu

Infection Growth from Start of Semester

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  9.1%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64

 R(test):  1.64
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New Infections Over Previous 14 Days

 # Students:  6806

 Testing:  every 7 days, 0% of students

 Infections:  1.4%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.64

 R(test):  1.64
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Chances to Get COVID on 14-Feb-2021 (no masks)
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COVID-Back-To-School https://covidspread.idea.rpi.edu

Infection Growth from Start of Semester

 # Students:  6806

 Testing:  every 7 days, 20% of students

 Infections:  1.6%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.06

 R(test):  0.98
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New Infections Over Previous 14 Days

 # Students:  6806

 Testing:  every 7 days, 20% of students

 Infections:  0.9%

 Budget:  100000 tested

 R0:  7.44

 R(no test):  1.06

 R(test):  0.98
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Chances to Get COVID on 14-Feb-2021 (no masks)
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Rensselaer: 1.5% ≈ 60. 18 infections so far.
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Tools to Policy

We have tools to model spread at all scales.

In policy making, all scales are relevant. Decisions should take a holistic view.

The spread of COVID is just one factor that influences these decisions.

. . .

I really enjoyed giving this talk
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